Component Defect	Module Backsheet chalking (whitening)					
Appearance	White powder is detectable on the external surface of the backsheet. It can be seen by passing a finger over the backsheet. It can be removed. The backsheet has usually a rough or dull appearance.					
Detection	VI					
Origin	Chalking is caused by the ph layer containing inorganic pig layers as UV blocker.	Chalking is caused by the photothermal degradation of the polymers in the outer backsheet layer containing inorganic pigments. For example, TiO ₂ pigments are often used in the outer layers as UV blocker.				
	Production	Installatio	n 🗌	Operat	ion 🔲	
Impact	Chalking does not affect module safety or performance on first sight, but it can be a sign for an ongoing degradation of the backsheet and a precursor for severe backsheet cracking. Due to the degradation-induced reduction of UV protection, more serious failures, such as back- sheet cracking and insulation failures can occur . Enhanced moisture diffusion into the en- capsulant/active PV-parts can lead to corrosion of cells and connectors, having a negative impact also on the performance					
	Safety:		Performance:	1		
Mitigation	Corrective actions	Preventiv (recomm	e actions ended)	Preven (option	tive actions al)	
	Regular inspections should be done to monitor the pro- gress of the observed failure Ground fault detection by in- verter or other devices at al time.	Check va	Check validity of IEC 61215 certification and BOM.		r system inspections.	

EXAMPLES	(page1)			F	PVFS 1-6 vs.01
Examples 1-2					
	- 21				
	Finger with white powder. [TUV Rheinland]	Fingerprint on chalking. [TUV	a module with Rheinland]		
Severity		•			

Component	Module				PVFS 1-7 vs.01			
Defect	Burn marks							
Appearance	Burn marks are visible with the naked eye as burnt, blackened area/s. The burn mark may lead to bubbling or melting of the polymeric encapsulant, and/or glass breakage or a hole in the backsheet. Burn marks on the backheet may be not visible from the front requiring an inspection with an IR camera if the back of the module is not accessible. They may however not be visible by IR inspection in case no further or ongoing heating occurs.							
Detection	VI, IRT, (EL)							
Origin	The defect is associated with parts of the module that became very hot because of production errors (e.g weak solder bonds, ribbon breakage, incomplete cell edge isolation, alignment errors, metal particles) and/or transportation/handling errors (e.g, cracked cells, damaged back-sheet) in combination with one or more operational factors (e.g. shadowing, open circuited bypass diodes , reverse current flows). Physical stress during PV module transportation, heavy snow loads, a lightning strike, thermal cycling, and/or hot spots by partial cell shading during long-term PV system operation forces mechanical weak(ended) cell/connection parts to break. Burn marks occur for example when a reverse current flow causes heating that further localizes the current flow, leading to a thermal runaway effect and the associated burn mark.							
	Production	Installatio	n 📃	Oper	ation			
Impact	Burn marks on interconnections are often associated with power loss, but if redundant electrical interconnections are provided, a failed solder bond may have negligible effect on the power output. If all solder bonds for one cell break, then the current flow in that string is completely blocked and an electric arc can result if the current cannot be bypassed by the bypass diode and the system operates at high voltage. Performance, reliability and safety are likely to be severely compromised. Such an arc can cause a fire if there happen to be flammable material around. If there is a question about whether the existence of the burn mark requires replacement of the module, an infrared image under illuminated and/or partially shaded conditions will quickly identify whether the area is continuing to be hot and/or whether current flow has stopped in that part of the circuit. Temperature difference between neighbouring cells should not be over 30 K. At this stage safety risk may still be not so high because the temperature of this hot spot cell does not increase to more than around 100 °C. Also edge isolation faults on the solar cell level are under normal conditions not problematic, but when the bypass diode is in open-circuit, the current is driven in reverse through the shunts of the solar cells and burns the encapsulation.							
	Safety:	m	Performance:	1234	5			
Mitigation	Corrective actions	Preventive (recomm	e actions ended)	Preve (optic	entive actions onal)			
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules.Visual inspection before in- stallation, commissioning of system with IRT.Reg			in- Regu g of	lar system inspections.			

EXAMPLES	(page1)				PVF	S 1-7vs.01
Examples 1-3						
	Burn mark at the cracked backshe	e backsheet with et. [Sinclair17]	Burn marks at th to heating along ges14]	e backsheet due a busbar. [Könt-	Burn mark asso heating along th connection (wit damage). [Könt	ciated with over- ne metallic inter- hout back-sheet ges14]
Severity	f e m	⊢ • • • 5	f e m	⊢ <u>+</u> 345	f e m	-23
Examples 4-6						
	Front and back s pass diodes and cracked cells). [k	ide view of burn n d current mismat (öntges14]	narks caused by c ch conditions (du	ppen-circuited by- ue to shading or	Burn marks ca bypass diodes nect failure in [Köntges14]	aused by defect or an intercon- the junc. box.
Severity	f e m					
Examples 7-9						
	Burn mark with caused by poor soldering. [Yang 1-8 and PVFS 1-	n broken glass bussing ribbon 19] (s. also PVFS 8)	Burn mark due t ing caused by e turing process. [o intrinsic shunt- error in manufac- Yang19]	Burn mark d shunting cause manufacturing [Yang19]	ue to intrinsic ed by error in process.
Severity	f e m	⊢ <u>+</u> 345	f e m	1 2 3	f e m	1 2 3

Component Defect	Module Glass breakage		PVFS 1-8 vs.01					
Appearance	Glass is cracked locally or over the full area of the module. Glass breakage looks different depending on the type of glass and the origin of the glass breakage. Tempered glass or heat-treated float glass will shatter into small pieces, whereas annealed glass breaks into big pieces. Heat-treated glass stays in between.							
Detection	VI, IRT							
Origin	Glass breakages of the front glass can be caused by heavy impacts such as hail or stones or other extreme mechanical stress onto the module frame due to external stresses or bad mounting. High temperatures (hot-spot or arc) can also break the glass. Annealed glass breaks also due thermal gradients or stress induced by the lamination process or cleaning of the modules. A relatively often seen failure in the field is glass breakage of frameless PV modules caused by the clamps. Glass/glass modules are more sensitive to glass breakage. The origin of the failure is, on the one hand, at the planning and installation stage either (a) poor clamp geometry for the module, e.g. sharp edges, (b) too short and too narrow clamps or (c) the positions, kind or number of the clamps on the module not being chosen in accordance with the manufacturer's manual. The second origin which induces glass breakage could be excessively-tightened screws during the mounting phase or badly-positioned clamps. The glass of some PV modules may also break due to vibrations and shocks occurring during transportation or handling. Another reason for glass breakage comes from impact stresses on the glass edge. Sometimes vandalism or animal damage happens, the animals like goats like to climb on the PV modules, and birds may drop stone or other objects from the sky							
	Production	Installation	Operation					
Impact	Module mechanical integrity is compromised when the glass is broken. Over time glass break- age leads to loss of performance due to cell and electrical circuit corrosion caused by the penetration of oxygen and water vapour into the PV module. Shattering of tempered glass usually also breaks the cells reducing the power of the module and increasing the risk of hot spots. Mechanical and electrical safety is thus compromised. Firstly, the insulation of the mod- ules is no longer guaranteed, in particular in wet conditions. Secondly, glass breakage causes hot spots, which lead to overheating of the module. A module with a completely broken glass lead to current and power reductions in the whole string.							
	Safety:	Performance:	2 3 4 5					
Mitigation	Corrective actions	Preventive actions (recommended)	Preventive actions (optional)					
	All damaged modules have to be replaced.	Adequate transport proce- dures, installation and clean- ing by trained personal, in case of higher snow or hail loads use of certified mod- ules.	Regular system inspections.					

EXAMPLES	(page1)				PVF	S 1-8 vs.01
Examples 1-3		1				
	Chipped glass at the [Packard12]	corner.	Glass breakage interconnect ribb manufacturing pr	along the string ons due to weak ocess. [SUPSI]	Glass breakag glass induced [SUPSI]	e of tempered by a hot-spot.
Severity	• • • •	<u> </u>	1 m e m	-23	f e m	⊢ <u>-</u> 345
Examples 4-6	Glass breakage caused	by too	Glass breakage	caused due to	Glass breakage	e caused due to
	tight screws. [Köntges1 also PVFS 3-1)	4] (see	poor clamp desig	ın. [Köntges14]	poor clamp des (see also PVFS	sign. [Köntges17] 3-1)
Severity		4 -1	f m e m		f m e m	
Examples 7-9	Glass breakage throug temperature gradient a tempered glass. [Köntges	h high nd not 14]	Glass breakage glass induced [Köntges17] (see and PVFS 1-9)	e of tempered by burn mark. e also PVFS 1-7	Breakage of f [Köntges17]	empered glass.
Severity	€ ● ● → → 3	4 5		⊢ <u>+</u> 345	f e m	⊢ <u>+</u> 345

EXAMPLES	(page2)		PVFS 1-8 vs.01
Examples 10-12			
	Direct lightning stroke. [Könt- ges16]	Impact damage caused by a heavy object. [SUPSI]	Hail damage. [SUPSI]
Severity	f e m 5		f e m5

Component Defect	Module Cell interconnection failur	e	PVFS 1-9 vs.01				
Appearance	Weak or broken cell or string interconnection are not easy to see by the naked eye. The failure can be identified as dark region in the electroluminescence image where the failed interconnect would otherwise be collecting carriers or as a hot spot in the infrared image. In a progressed stage burn marks and glass breakage can occur.						
Detection	EL, IRT, STM, (VI)						
Origin	Typically, it is caused by the manufacturing process (e.g. poor soldering, misplacement of ribbons, too intense deformation of the ribbon kink, narrow distance between the cells) followed by thermomechanical stress or repetitive wind load caused by the outdoor operating environment. Electrochemical corrosion can be another cause for the degradation of interconnections.						
	Production	Installation	Operation				
Impact	Poor interconnections (soldering bonds) lead to an increase of contact resistance, higher power dissipation and localized heating. Broken connections are often associated with power loss, but if redundant electrical interconnections are available, a failed connection may have negligible effect on the power output. Safety risk may be not so high until the temperature of the induced hot spot does not increase to more than around 100 °C. If all busbars of a cell are interrupted, then the current flow in that string is completely blocked and an electric arc can result if the current is not bypassed by the bypass diode and the system operates at high voltage. The safety risk depends on the durability of this bypass diode. A bypass diode, which is continuously active over days can be damaged and pass into open-circuit or short circuit state. As a result of an open circuited diode , the current goes through the failed cell string and generates heat at the disconnected position. Very high temperatures or an electric arc and may cause fire, open electrical conducting parts to the user and destroy the mechanical integrity of the module.						
	Safety:	Performance: 1	2 3 4 5				
Mitigation	Corrective actions	Preventive actions (recom- mended)	Preventive actions (op- tional)				
	Modules with a direct safety risk or a severity of 5 should be replaced. Regular inspec- tions should be done to moni- tor the status of the not re- placed modules.	Check validity of IEC 61215 certification and BOM.	Regular system inspections.				

EXAMPLES	(page1)				PVF	FS 1-9 vs.01
Examples 1-3			Disconnected	d positions by STD		
	Zoom of a brok nect. [Yang19]	en cell intercon-	EL image of a m with disconnect ribbons. [Köntge	odule with 3 cells ed inter-connect es14]	Disconnected with delamination	cell interconnect on. [Köntges17]
Severity	f e	-234-1	f	-234-	f	⊢ <u>234</u> ⊣
Examples 4-6						
	Dislocation of ribbon. [Sinclair1	interconnection [7]	Poor soldering connect leading broken glass. [Y PVFS 1-7 and P	of string inter- to burn mark and ang19] (see also VFS 1-8)	Mirco arc which ductive glue or connect has an tact. [Köntges14	occur if the con- the string inter- insufficient con- 1]
Severity		1 2	f e m		f e	H 2 3 4 H

Component	Module					DVES 1-10vo 01	
Defect	Potential induced degradation (PID) (page1)						
Appearance	A potential induced degradation (PID) is not directly visible by eye. It is recognisable as an overtime increasing power loss, which is easily observable only a few years after installation. Infrared thermography (IRT) imaging of operational PV modules in the direct sunlight is the most straightforward method for getting the evidence of PID degradation. Typical PID IRT patterns (warmer cells close to the bottom frame or patchwork patterns) and PV modules positioned close to one of the poles of the module string are strong indications for PID. The most efficient, but more complex and expensive detection method for PID is to take EL images. When taken at 1/10 of the rated current it can detect PID also in an early stage, before a power loss can be noticed. It's because in the early stage, the PID degradation is more pronounced at low light conditions. To quantify the performance loss, I-V measurements have to be performed on the affected string and/or modules. In an advanced stage secondary induced failures like hot-spot's , yellowing and/or corrosion can be sometimes observed.						
Detection	IV, EL, IR	RT, (MON)					
Origin	PID is a degradation mode induced by a high voltage stress with respect to ground. The occurrence of this failure depends on the magnitude of the voltage (number of serially connected PV modules per string) and the polarity of the electrical field build-up between the framing/glass surface and the solar cells. The last depends on the inverter typology (transformer), the grounding concept and cell technology. Modules with p-type cells degrade in negative polarity strings whereas modules with n-type cells in strings with positive polarity. PID degradation is more pronounced the higher the potential to which a single cell within a module or string is subjected. The PID effect is therefore stronger in cells that are located at the edges of the module (close to frame) and to the bottom of a string with an increase towards one end of the string. The degradation is further accelerated by temperature, humidity, rain (surface wetting), condensation and soiling. Two different types of PID are known for crystalline silicon modules: PID-p (p olarization) and PID-s (s hunting). The PID-p was observed for the first time in back contact cells within Sunpower modules. PID-p is caused by the build-up of negative surface charges on the cells, which results in a current loss. The PID-s is induced by leakage currents through the module's front glass and the encapsulation material. The flow of Na+ ions mainly from the glass into the cell leads to the creations of shunts. For both PID types, module and cell design has a fundamental influence if and how much a module is affected by PID.						
	Productic	on 📃	Installatio	n 📃	Opera	ition	
Impact	Production Installation Operation Production Production Installation Operation Operation Production Production Installation Operation Operation Production Installation Operation Operation Installation Operation Operation Installation Operation Installation Operation Installation Operation Installation Installation Operation Installation Installation Operation Installation Install						
	Safety:			Performance:	⊢234	5	

Component Defect	Module Potential induced degrada	PVFS 1-10vs.01	
Mitigation	Corrective actions	Preventive actions (recommended)	Preventive actions (optional)
	How to proceed depends very much on the stage on which PID is detected. If detected in an early stage recovery is possible by applying a reverse voltage during night-time. Specific anti PID kits are avail- able on the market promising a recovery of the lost power. As there is not a full guarantee that the recovery will be effec- tive for the specific situation, it should be monitored or meas- ured to see if the problem has been sufficiently solved. In the case of progressed PID with- out visible module damages, the recovery could need sev- eral months or even years suggesting in any case a re- placement of all modules with modules tested to be PID re- sistant.	Modules tested for PID ac- cord. IEC 62804-1 should be less prone to PID (verify that BOM corresponds!)	PID prevention at system level: The installation of an in- verter with transformer can be considered as mitigation measure for the PID phenom- enon. On the other hand, the trade-off with the inverter effi- ciency and the cost of the in- verter must be taken into ac- count. Anti-PID insurance.

EXAMPLES	(page1)		P۱	/FS 1-10vs.01
Examples 1-2				
	Strings with PID, detected ges14]	with IR thermography. [Könt-	Dark IR thermograpl affected by PID. [Kö	ny at lsc for a module ntges14]
Severity		⊢ <mark>2345</mark>		⊢ <mark>2345</mark>
Examples 3-4	PV-	PV+		
	Strings with PID, detected w	/ith EL imaging.	Electroluminescence for a module affected	e image made at Isc by PID. [Köntges14]
Severity	•	⊢ <mark>2345</mark>		⊢ <mark>2345</mark>
Examples 5-6	PID affected module with pc	1000 W/m ² MPP (STC): 22.2 W 200 W/m ² MPP (200): 1.6 W (-63.6%) 10 20 30 40 50 Voltage [V] 20 wer loss of 89%, left: EL at 1.5 ame module at 1000 and 200	PID affected module 14% top: EL at 15 x	e with power loss of
	W/m2. [Herrmann21]		same module at 0.2	$x I_{sc.}$ [Herrmann21]
Severity		F - 1 - 1 5		<u>⊢</u> 131